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‘.,
!l!heeffect of cyclic gas pressure va,rie,tions Oil the

periodic heat transfer at a ‘~lat wall is theoretically
analyzed and the differential equatio’n describing th’e
~3rocess and its solution for relatively .Small pressure
fluctu~t.ions developed, thus explain i,ng.rth.e periodic heat
cycle betwe’en gas and wall surf ace.

The processes for pure harmonic pr’essur”e and tem–
perature oscillations , respectively, in the gas space
are deseri’bed. by means of a constant heat transfer coef—
ficient (aw) and the equ.all~~ constant phase angle (~a)

between the appearance of the maximum vaJues of the pres—
sure and heat flow most conveniently expressed mathemiat—
ically in the form of a complex heat transfer coefficient
(ac, equations (12),(20)). An>- cyclic pressure oscillations,
can be reduce d’by Fourier- analysis to ‘harmonic oscilla-
tions, which result in s-tccific, mutual relationships of
heat-t ransfc~ coefficients e.nclphase angles for the dif—
ferent harnonic~. . .-. .

The heat transfer betvoen gas and c~linder wall of
reciprocating en~,ines of any tj.~e.is”important for their
functionin~ and dependability in seivicc. The amount of
heat transfer “depends upon a number” of factors, such as
the ge”dmotric shape, the gas and wall temperatures, the
~as velocity, and so forth. T!;hepresent invest ig,ntion
deals vith the effect of a per] odic compression of gas on
the periodic heat ,iransfer. Proceecl”ing-from considerably
simplified assumptions, ..cnt.t,o.which the heat oftho e:<’

-. compression dev”elo’peelin the botinda~’j-layer immediately
adj accnt to the wall shrya~c aff~cts the amount oft”heat
pass ini period i~ally into the w,~ll is indj cated.
—— ——_,.._-.——.-__-_—_ -— —.. ——4—————— —- —-— ————.
*!lDe=.-Ocriod.iscl.e w.~rr,eflbel.~a~gbei .kloinen Drucks.c.h*~ankungen.’l

.

jjjorsc~ll~ngauf d.em Gebiete des Ingenieurwesens’j vol. 11, no.
2, Narch-April 1940, pp. 67–75.
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. ~ INTROiUOTIGN j “’

The internal heat transfer between gas and cylinder
wall in reciprocating engines especially of the internal
combustion type is of primary importance for their func-
tioning and dependability. Owing to the cyclic operating
method on all reciprocating engines, the internal heat
transfer varies with respect to time, hence, nonuniformly.
Two substantially different time intervals must be iden-
tified during a complete working cycle: namely, the heat
transfer in the cjlinder, while pressure balance exists
with the outer atmosphere, and the heat transfer with
cylinder closed (reference 1). At pressure balance with
the outer atmosphere the internal heat transfer is large-
ly conditional upon aerodynamic points of view. Du~ing
the tine interval in wh’ich the operating cylinder is
closedt the heat transfer is, in addition to the flow
processes, considerably affected also by the compression
or expansion and the combustion of the fuel.

The following deals primarily with the effect of
cyclic coiopression on the periodically changing and steady
heat transfer. In consequence of the compression there
occurs in each element of the gas space the heat of com-
pression which in part servos to raise the gas tempera—
.tu’re (internal energy) of that space element and in part
is carried off through the cylinder walls. Since this
heat of compression originates in the same way’in the
adhering boundary layer directly adjacent to the wall
surface also where it is imnediateli re’imovedby the cool-
ing effect of the wall, and effect of th6 h~at transfer,

‘. especially in high—speed reciprocating c~lgjnes must,,be
definitely expected. The subsequent cnnsi~erations pro-
ceecl from simplified assurilpti.ons , so that at first only

“ the anticipated effect at low, periodic compression can
be coiflputcd. A more accurate calculation later cn pro–
vides the details of the process at higher compression.

!i’hefirst of the studies dealt with two-dimensional
temperature fields, where the boundary layer thicknesses
in Question are in general ,snall conparecl to the ctirva-
tur; of the wall surfaces (so far as corners and edges
are ignored). Then, if a very thin gas film alongside
an isotherm within the boundary layer is considered (see

,. fig. 1), the thermal processes taking place tkeretn can
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where

Q (kc&l/kg)

i (kcal/kg)

v (m3/kg)

P (leg/m2)

A (kcal/mkg)

by the first law of thermodynamics. Visu–
very thin gas film as having such a large
it momentarily encloses the unit weight of
first law readsby way of example:

~,

dQ=di–AvdP (1)

heat input introduced per unit weight of
thin gas film

heat cont”ent (enthalp#)

specific volume

absolute pressure in the gas film

mechanical equivalent of heat

The heat volume dQ remaining in the thin gas film fol–
lows from the difference of the heat volume introduced
and removed, respectively, fiy thermal cond~~ction, if the
transmission by radiation can be ignored..

where

2?’(m2) cross-sectional area of the gas film
.

.hq = –A
(

~~b ‘kcal
l-]——bXj ~m2h the difference of the heat flow

immediately before and behind the gas film

ukcalA— thermal conductivity of the gas in the film
Lmh°C

~(OC)increase of temperature of the gas film against a
zero point chosen at random

x (m) position coordinate perpendicular to the cross–
sectional area of the gas film
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,.

T (h) time -.,,,

The cross–sectional area F of a gas film of small
thickness Ax is found, with the assumption, that it
shall enclose the unit ,weight of the gas, from: l?Ax=v.
At disappearing thickness of this ~as film, the amount of
heat introduced is

(~&+\
h)

dQ=v – dfr
. ax

The variation of the heat content of the gas film is on
the other hand: di = CP ‘+

cp(kcal/kgOC) specific heat of the gas at constant .
pressure

Posting these relations in the equation (1) affords:

The above developments retain their validity, even if
the gas volume enclosed in the considered gas element is
assumed arbitrarily small. There’for’e, the above equa–
tion.retia’ink cdrtect for each smallest gas particle
(mass particle), .so far as, it does not- solely enclose
individual molecules. Transforming this relation, ap– o
plicahle for the present to the mass point, “oy means of
its velocity W = dx/dT in heat flow direction into the
usual trilinear coordinates, and assumin~ equal pressure
in all gas particles we get:

The form of this differential equation of second order
is that of the conventional differential equation of heat
conduction with convection flow and three dimensionally
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dtivided.heat; sources. The’ first term’o~ the:lef% side in
this .di,ff.erent&l ,equat.io”n.&ef ines ,th-e.,.m~oun,tof. heat, r e-
quir,ed at instazztianeozs.temperature ,changes (due to the
heat capacity of, a“,gasparticle,) while. ;the second ter’h
represents ,tihe.heat v;olu.uptrankporte.d, by the motion of
the gas p’article,~ ,.in’~t~edirection .of ,the t,emper’ature,
grad ient,..-that, is, the,.heat transfer by coh,~ection, in the
gas , The, first’.”t’er.rn,on’ the right si.d’e,of ‘the equation
rleprese~ts the diffey~nce, in heat vol-ume introduced, and
renoved, respectively, ‘‘of the gas part,icle, by pure heat
conduction, while the second term gives the amount of heat
released by compression. It is seen that this heat of
c~mpress ion occurri@g in ,the.space element independent of
the ciuantity of heat removal’ i’s solely dependent on the
~omentary pressure variation.

Subsequently, solutions of this differential equa-
tion are developed for the specific case’of low c3Tclic
compression in a gas space directly in front of a flat
wall. , ,. ,.

Pressure fltictuatiozls in,.—. —— _ ———— gas’ at rest (infinitely
thick boundary layer ..

—-.—-..-—
)– In the simplest case of a low-

—. —___

cyclic pressure fluctuation compared to the absolute pres-
sure of gas$ the gms properties can- bb regarded “as inde-
pendent’ of the’ pressure and the temperature. 7 1Joi”60ver,
the veloclty -w perpe,hdicwlar’ to the wall surfaeee can be
consi&eT.ed as fiisa-ppear’ih.gly:small. ‘The” eguat ion (2) can

,. Iihen be sim?l.ified to’.the’ following lin’ear d.iffeten’tial
equation of the’ second brdei: I ‘ “ ‘

(3)

wh ere
,. ..

\ ~lil=
a

IV th]=——
c.0 thermal conductivity and the subscript 1

‘, AL . ... indicates *he lna.tieri~iproperties of
., . -, the gas, the subs-cript 2 those .of the wall

since arbitrary periodic fluctuations can always be. re-
duced to harmonic ‘variations by series development ac–
cording to Fourier , th,e ensuiag considerations ar,e re-
stricted to these.

L --- ——
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,.. ‘The teqerature field in the gas space,.- The .f?rst,- —.. — — --—— ——.. —
-solu”tfbn‘concerns’,the following problem: Visuaiize a
large ~gbs space in front of ~a relatively thi+c wall with
‘flat kuifo,ce ‘and in this” sjace harmonic pressure varia–
jions:. To ,be founa’is the periodic heat transfer at the
wall. su,rface for any required frequency of pressure
fluctuation ,“when’ the g~as is practically at rest’ or when
a very t~ick laminar boundary layer exists at the wall
.surf,ace. ‘The press ur”e oscillation is t-o be yresented lry
the follo~~illg equai ion*: ,,-

“-,
!-

,Pc .= PI + Ape~~T ‘ (4)

wh ere

1’1(&/m2) mean tine value of the pressure

Ai? (kg/mz) amplitude of the pressure oscillation

w (l/h) natural frequency of the pressure oscillation
!,, ,

j=zi fictitious unit

The subscript C signifies that the considered quantity is
“complex.

Yith the origin of the place coordinates po’inting
‘toward the wall and at right angles to its surf,ace, (see

l): A partial solut ion..of the riifferent ial equation
.;~?”for a Periodically chang-ing temperature field in the
“gas space before the wall. (See reference 2 for pr+ncipal
data for the dkvelopmen~ of this ,solution. ) ,

Avl AP

[
ejwT ~_:–P12 e$”~x

~ c ‘ ‘—”——
CP 1 2 1

whence with the gas equation Pv, = RT .,

.,

[
~-~ 42 ~leJwT 1._’L-2~= eiJIX%Q = —_c

K l?~ 1’
(5)

.. . .
— -—.-—-——-—-————— —— -—

* ~f all the complex solutions, the real or imaginary part
by itself’ presents momentatilya. physic.ally poss,ib,lo solu–
tion. ” Th’c ‘follo~w’ingmalculation,s are worked out largely
complex by utilization of the conv.cnt ional method (see ref-
erence 1); lut they can also he worked out real without
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‘?rl.( :x.) rfiean;“absolut e,*eIoperatur R, of’the g?s.. ....... .,. -
,.- ,:,’. ..

>.-. PL2.”’ refl-ec*Mm nu-mhew of’the tempe~atur e b-ea. .
... ,.. .. . ,.,.. ,. -L ,-..., ‘,.

‘h addition: ~ ,:.‘:‘:: - . - . ,.’ --.. ‘:

‘c”,waies

. .-: -- >,..
wher e .. ...- ,., . .

b=m, (kcal/m ha ‘~= ‘c) heat stress capacity

The ti”~:il-l~rbit:~-a~~~’z’er~p~int..of” the’-t’ncrease of tempera—
ture of ‘the gas is chosen equal to the momentary mean
value -of the. g.a.et.emp.erature at the particular. Point .
The cg>’re-ctilesso-% ih is solution’ can fie.read-ily checked
by intro duc-tioa ‘into “~l~eIii’fei”ential” equation (3) .--

‘The t~erature ficlcl in the wall - Sicce there are———— — —..-—..-.——— —.—.——— .
r.o heat sources -withiil the wall, the temperature field
obeys the different ial, ‘eq+dati~il of heat conduct ion for
so’lid “oodies:

(6)

t (“c) -‘i-n.creas’e of .te~lper.atvre of the wall relative to
its momentary mean time value ‘

Its solution in ~th,e~present case is:. ..,. -.
A.[l/Jp

t~ = ejLuT~+P12 ~_Wzx=K–l Q: ~ jwTl+p12

c1?1 ,2 PI le
— ——.—

.. ~. 2
e–llJ2x

(7)

it is e3,sily provecl ti~~t the limit conditions at the wall
surface ,are actual ly-e<ulf.il.~ed%y the equations (5) and

.-

- @($:) o=’-~@)o
(7’):,“,~s-fey-~ ~,=’ O; ‘.:cO=ti:o,’~l?d

.,
. ———_—... . - .. -.----——.--- .-

(~o~tinucd fr.o’m-ps:gev3,).e~~.~cial d.ifficult is~ , with soie
larger talc.ulat~ng ,.effo-rt. ..J?oTthe .calcul.ation with’ e.om-
plex v~l~Les See for ex,o,mp”leB. H. G. ~l&Ller . Treatment of
oscillation problems. Leipzig 193’7.
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Heat flow and tem~erature difference %etween gas and
wall .— Having seeri from the foregoing, that the equations
(5) and (’7) actually represent the solution of the problem,
the pei’i.odically varying heat flow q any chosen point in
the gas space or in the wall can be predicted without dif–
ficult.ies. Zly way of example, equation (5] affords for the
gas space:

with q indicating the heat flow at point x in the gas
Spacee

According to equations (5) and (7) it also affords
the monentary difference between the temperature *cm of
gas at great distance from the wall and that of the wall
surface tco (x = O) at

K- I Al?
+cco”tco=~ — Tlejw’ I-Pza

Pi 2 (9)

The heat volume qco penetrating periodically in the

wall surface per unit time per unit surface is according
to equation (8):

K -1 Ar ~ 1qco = —– — “WT– ’12 bl/~eJ
K PI 1 2

(lo)

Thus with equation (9) and ~~= ej(n/A) :

~.he heat transfer_coefficient .— Defining a5 in——
steady temperature fields, a heat transfer coefficient
for harmonically varying processes according to rela-
tions: ~~ = ac(oc - %C), a comparison with equation (11)-

furnishes the complex heat transfer coefficient mc de–

scribing the periodic heat transfer in the present in-
stance in the form:
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.-
..---

CLc =. b, J“ eJ(n/4), = ,Gwe~ca - . (12)
... . ,--, ..-. .

from which the .a%~blut:e value “&w ‘of th’is c’omp-lexheat

transfer coefficient .a,c for t,he frequency w - of the

pres5ure oscillation at’:
,. . .

%.)= I)ld: (12a)

and its phase angle

( 12b)

It is p-lain from equation (12a) that the heat volune
periodically transferred to the wall during harmonic
pressure oscillations in a gas at rest is proportional
to the root of the frequency of the pressure oscillation
and to the heat stress factor ,bl of the gas. The naxi–

mum value of the heat ~flowherehy lies independent of the
frecluency of the pressure oscillation, always by the
amount of the phase angle ~a = IT/4 ahead of the maximum
value of the temperature difference. The two phenomena
are not summarily predictable on the basis of the experi-
ence vith steady heat transfer. nut they find their physi–
tally plain explanat ion in the fact that heat sources exist
also under the effect of compression in the gas films ad-
‘herin~ directly to the wall surfaces, the heat of which$
owip-~ to the great capacity of the. wall$ is immediately
carT ied. off even during foriflation. The yield of these
heat sources, tha-t j.s, the compression heat produced per
unit tine, is proport~o.nal, to t,he frequency of the pres—
sure oscilla%t-bn. But ,’Sj.DCe on. the o~h.er band, the rate
of diffusion of kleat sources is only proportional to the
squa~-e root nf the frequency; an increase in the oscilla—
tion frequency number. is refiected by a continuously de-
creasing part of the gas space before ~he wall subjected
.to,,their heat’ disi’ipating effect. As a result the amount
of heat actually tirarismitted per unit time u~der otherwise
identical conditions is proportional to the square root
of the frequency; correspondingly it affords the same re-
lationship also for the coefficient of heat transfer.

!The advance hy the phase angle n/4 of the heat
transfer in respect, to the temperature in the gas core
is lastly. due to the fact’ that the greatest yield of, the
heat source s”.in th’e gas extending directly up to the wall

1-
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, ..

surface, that is, the momentarily greatest heat of com-
pression per unit time, coincides with the steepest pres-
sure ris e,. and hence the temperature oscillation i-nthe
ga$’co~e leads by the phase angle n/2.

Since gas films even at a “certain distance away from
the wall surface still contribute to the heat flow and
these portions need tine to reach the surface, the maxi-
mum value of the heat flow must in any case lead by a
phase angle ranging tetween O and l-f/2 relative to
the temperature oscillation; the calculation proves this
ly the phase angle Ca = n/4 independent of the fre—
quency and the nature of the naterial. To simplify the
identification of the periodic heat transfer between a
fixed wall and a gas at rest in front of it which mani–
.fcsts harmonically variable, small pressure oscillations
the twO quantities C@ and ca are sufficient .- Quan—

~ tity aw multiplied l);~the greatest valu O of tem-

perature difference, gives the anplitude of heat floi,,~
and ca is the phase angle, correspond to the &hoe dif-

ference between the-maximum value of the harmonically
variable tem.~erature difference and that of the heat flow.
These two quantities are most conveniently expressed in the
fern of a complex heat transfer c~efficient ac , which

while affording no new “physical knowledge provides a
suital13-erepresentation.

With the application of two real quantities ~

and Cm for the description of a harmonically variable

heat transfer, the ratio between the us.ua$ly not coinci–
dent naxinun values of heat flow and the temperature os–
cillat ion, as well as their relative ~emporary displace-
ment ~ = Es/w is established. The a$temp% to express
~ these heat-transfer ratios by the conventional ,r.epresenta–
tion with one real value and concurrently existing in–
stantaneous values, results in spite of the continuously
finite magnitude of the passing heat volumes antithe .tem-
‘perature differences in heat-transfer” coefficients, which
:fluctuate between +~, and - ~ during a -period. ,.

... .
Noziharmonic temperature – heat oscillations can be

directly reduced to harmonic ones by Tourier analysis,
each upper harmonic affording a new ~ and. ~a which

in the”’firesent instance of cyclic compression- can he
solved bY neans’ of equations (12)’, (12a), and” (12 b), re-
spectively. It is plain, that each upper harmonic
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manifests the same phase angle Ca = IT/,4 and has a

greater heat-transfer coefficient aW corresponding’ to

the root of the multiple of its frequency relative to
the fundamental oscillation.

Numerical exampl_l__and range of valid ity,- The prob–
lem illustrating the orders of magnitude is as follows:
Harmonic sound waves with a frequency of 500 Hertz strike
a flat. wall placed in atmospheric air. Owing to the
relatively great wave length a,pressure gradient perpen-
dicular to the wall surface is discounted. With a heat
stress factor of hl = 0.08 kcal/m2hl.\2 Cl according to

equa~.ion (12a) for air under normal condition the magni-
tud$ of the heat-transfer coefficient; is:

.————..— .—
aw = 0.98 fiOOX2W X5600 = 8X33.4 = 267 kcal/m2h0C

This heat–transfer coefficient caused. by the compression
alone in air at rest is therefore of a magn!.t~lde obte,i.n-
able by steady heat transfer in gas only at very high
velocities but not with gas at rest. T1.is fact izsclf
is indicative of the great i~~~Luence of the Compress ten
on the periodic heat transfer in piston compressors and
heat engines.

To judge the practical almissitiility of the assump-
tion regarding the laminar fluw ii~ the gas f;.lms directly
in front of the wall, the depth effect of the wall in-
fluence upon the compressed, gas- is ana~~zed. The g~s
temperature, at a distance X25 varies according to
equation (5) l)y less than 1 percent from ‘that at very
great distance from the wall, if

However , according to equation (5a) the approximation

P3zz- 1 + 2 bz/b2 is admissible for the reflection

factor p12 at a metallic wall for which always bz>>bl –

thus for an iron wall, for instance b2~ 200 kcal/m2hl@0C’

for atmospheric air against iron:

P12 F -l+2~=_ 0.9992 Z– 1.
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For atmospheric air the temperature conductivity factor is
al m .0.07 ins/h; hence for a frequency of 500 Eertz

——
/

J’
0.0?

!!2 in 100 sO. 365 X 10–3m
500 X2n X3~ ~

that is , the wall effect is in many practical cases con-
fined ‘co the still—existing boundary layers even in
larger flows. This proves the practical admissibility

of the simple assumptions of these developments for many
cases. But; in order to be able to make reliatle pre-
dictions at” substantially smaller oscillation numbers
as corresponds to customary rotative speeds in engine
design the considerations are extended to include the
case of a boundary layer of finite thickness-

l?res~ure oscil~~tions by turbulent ~as core.(-finite—— L
$_hickness of boundary layer).– In the following calcula–— -——
tion the actual boundary layer flow (which in general
shows no sharp delimitation against the gas space and also
is not always completely l.aminar) is replaced by a corre—
sponcling, idealized %oundary layer , manifesting a pure
laminar flow parallel to the wall surface and an expressed
sha.rp boundar?y towa~’d the completely turbulent gas space.
The idealization is reauired only in consideration of a
sinple calculation; it-furnishes no essentially differ-
ent results from the practical conditions, since similar
cond.itioils prevail even by partly turbulent boundary
layer. As a result of the assuned complete turbulence
in the gas core the temperature in it will always be the
sme at 2QY point; hence it must always be lower than the
adiabatic compression temperature by reason of the heat
removal through the boundary layer,

Temperature field and heat flow in boundary layer.-
The temperature field within such an ideal boundary layer
of constant thickness is visualized as being composed of
two portions, as .follovs. The first portion is produced
as the result of the ter.perature variations in the tur3u-
lent gas core, purely on the basis of the heat conducti—
hility of th,e boundary layer visualized free from heat
sources and can he presented by the following equation:
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wM.ere . .

Q(Oc) - amplitude of swing of the temperature in the
turbulent gas space ....~.

6 (m) thickness of the idealized boundary layer
. . .

The second portion is the result af the lzeat sources
distributed in the %ound.ary layer with the stipulation
that at point x = -6 the function is always zero and
adapts itself at the wall surfac’e X=o to its reflec-
tion conditions. .- .. ..,

Qg (“c) amplitude of s,wi-n~of the g,as temperature at
pure r.diab,~tic compress ion..

A comparison of this relation with equation (5) gives for
D—>m the magnitude of the amplitude 00 at

TIie ,actual temperature field in the bouildary layer is ob-
tained as the sum , of these two p.o.rtionsj ‘where the momen—
tary time average ‘of the gas temperature is again chosen
as zero point of tb-e increase of temperature.,.

()‘ 1–$ ~[e-(6+x)iJ
I+p

}
e–(6–x)*l] ;

12

\

–i~xso [13)
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. .

The gas temperature directly at thewdl surface X=’o
is on the other hand: ..

{
1 +’

- (1-8 ‘e-’+’}(13b)
In-a’@.dit ion the heat flow within the boundary layer is
reprcsenteil according to equation (13)13y:

whence the heat volune transferred to the wall with
X=Q is:

The heat volume removed from tb.e turbulent gas space is
with :1= -6 accordipg to equation (14):

,.~

I



—
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.,
‘Tem”l~er~turefield arid heat flow in the wall - I?ina].ly--—-—..— ——— ●

in conjunction with equat ioh- (13b) the temperature osrill,~
tions in thp. fixed Wallcan.be represented by s
‘t

whence the heat oscillation at the wall surface x = O:

(1 2 e–d-f~
}

(15a)

It is plain from equations (13) to (15a) that all boundary
conditions at points x = O and x = -6 are t’ulfilled..
Herel~ith the equations (13) and (15) re~pectively, repre–
sent the solutions of equations (3) and (6) for the given
pro bleu. It merely involves the determination of. the
teniporarily unknown amplitude G of the temperature of
the turlmlent ga,s,‘space.

The temperature oscillatio~ in the tu~~u~~~————— —.—
aor e.- Tb.e magnitu&e Of this amplitude of the temperature
in the turbulent gas core is found by a-pplicati~n of the
first law of thermodynamics corresponding to eq~ati On (1)
to the total turbulent gas space. Hereby is:

d.Q . O%vl.’ -“; ~Jclc )”_.~ di “ a(@*&
- (qc)–~ -~ =

G
— ———— ;s c

= CP3 —
6T –

wh ere
..

Ot (Uls) ‘.toial heat-removing surface of the turbulent
.gaS ppace

Vt (n13) volume of the turbulent gas space

— .— —- .- .-,, ,,,,,..-—-.. .... . . —-——. — .—. .—
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, . .

9 = vt/ot .(m) , substitute ,layer thickness of the- turbu-
.,.. ‘, . lent jg~s ,space. ;:’, ....

,,.

In conjunction vj~t~lequatibvs ‘/13a) , (143), and {5) “
there is thus afforded after a few ,eJ)ementary transform-
ations: ,.,. . ..-.

(+ (1- Ply%
= — (16)
(l- Plae‘z8~l)+s$l(,l, + p12e-2&$l)

,.. .

From this it is readily apparent thdt the t“’emperature
oscillation of the turbulent gas core is intimately re—

:. ,. . . . -

lated to .!
s - that is, to the thickness 861J1 =..~ ~ ,

,?:.
and the temperature conductivity factar al of the

‘ooundary layer as well as to the natural frequency w
of the oscillation. ,-Moreover, the substitute film thick-
ness s of the turbulent gas space is also of great in—
fluence. Equation 116) then affords in general a complex
value for certain conditions. This signifies physically
that t’fietemperature oscillations iii,the gas core due to
the heat diffusio~. does not take place in the same phase
as the pressure o-sdill.’ation.

The heat transfer onto metal wa-lls.- At the trans–————— ---—— —————
mission of heat between gas and metal wall the reflection
factor pla = –1, whence equation (16) gives with suf—
ficient accuracy for technical cases:

The temperature oscillation iil the turbulent gas space
is therefore according to equation (X3.5)

,. ... .

.,,
Corres~ondingly we ‘get “with ‘p12=_ 1 “according to equa-

tion (13b) the temperature at the wall surface x = O at:
:,,... ‘,,.,
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(*c). = (tc)o =’ o (18)

The-heat volume transferred. to the wall can be formed
according to equations (14a) and (16?) from

Then the complex heat transfer coefficient is obtained
for the periodic heat transfer at low harmonic compres-
sion of a turbulent gas with the natural frequenv w

lefore a metal wall from: ,

J
—

l?or great values of 81Jl = 6 w
5; this re].at ion changes

as is readily seen to the ~reviously developed equation
(12) for infinitely thick ooundary layer. On the other

T—

hand, fo’r very small values of 8 ~–
J ‘a1

( 20a)

&2Lu
on the assumption that —.-- <<1.’

al

For $1 = O corresyoncling to a natural frequency\
of UJ=o, that is, for the limit ca,se of steady heat
transfer, equation (20) is exactly correct:

CLco a. +
6

i+2s 1 (2ob)

To this steady limit ca,se there corresponds a uni—
form distribution of steady heat sources in the entire
gas space inclusive of the boundary layer before the
fixed waJ.1. The additional term 6/6+2s in equation
(203) represents the effect of these heat sources exist-
ing in the boundary layer. This limit value of the

.

-. - _ –——— — — __— . .
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complex heat transfer coefficient for a disappear ingly
. ..small frequency is therefore in full accord with the

r&al ~~at transfer coefficient a. to he expected from
corresponding stationary tests.

. In general 6<<s in technical cases hence the
heat transfer coefficient according to equation (20):

?bl ~l.fl(l + e-28~1) Al (NJ,)
‘C z ——. — =—..z- ‘– 6

; s>>~ (20C)
1 _ e—261JJ1

tanh. (6$1)

Theoretically the case of 6>>s is also
in which case according to equat~’on (20):

of importance,

;~>>cJ ( 20d)

Between these limit curves for a c ~;iven by equations
(20c) and (20d) lie all practically possible values of
the heat transfer coefficients for low cyclic compres-
sioil of gas for finite thickness of boundary layer.

Graphic representation of the results.- In fig-——— ————.— ——..——
ure 2the curves, according to equations (20) to (20d), for
finite parameter (6/s) in Gauss’ numerical plane are
ylotted dimensionless in form affording a complex Nusselt ‘....
numb er ~’u c = ac8/h entirely corresponding to the
steady--heat transfer, The magnitude of this complex num-
ber INucl = aw8/A is momentarily given as distance be-

tween the origin and the point of the numerical plane,

T
which is determined’ hy the parameter 6

I z,;
and”(6/s).

The phase angle ca of the complex heat transfer coef-

ficient ac agrees with that of NU c and can therefore

be taken direct as ~~eonetric angle between this distance
and the axis of the real numbers.

In retracing the curve of the complex Nusselt number
for a.certruin ratio (6/s) under otherwise identical
conditions in relation to the frequency, the following
obtain’s: lor w =. o the complex characteristic agrees

— I
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with the corresponding real one for steaily heat transfer.
At very low, but finite frequencies the portion of the
heat volume removed from the gas core still yredom~nu,tes;.
the amount of the heat—transfer coefficient therefore
barely varies, and the phase angle c~, remains for the

time being very small. With increasing amplitude, the
heat of compression produced within the boundary layer
becomes consistently more important. Since it is par-–
tially produced direct at the wall surface and immedi-
ately passes to the wall surface even while being
formed,,the phase angle must ultimately reach greater
values and progressively tend toward the previously com-
puted liroit value l-r/4. In correspondence with the
rising importance of the heat of compression within the
boundary layer, the value of aw8/A itself increases

with the frequency. The heat–volume removal from the
turbulent gas core on the contrary becomes smaller with
increasing amplitude, as is readily apparent from equa-
tion (16) where the tempere.ture of the turbulent gas core
consistently approaches the adiabatic–compress ion tempera—
ture.

Discussion of the results.- The -present calculations——..—.—————————...—
manifest good agreement with the physical observation.
They enable the numerical prediction of periodic heat
volume transferred to a flat wall at low cyclic
compression of gas, when a bouildary-layer flow of arlJi—
trary, constant thickness exists at the surface of the
~,:all. The assumption of a flat wall is technically ful-
filled in almost all cases, since the boundary-layer
thickness is almost always very small in comparison to
the curvature radius of an uneven wall. The %oundary–
layer thickness itself can usually be caculated or esti-
mated from known heat—transfer coefficients for steady
heat transfer according to the relation 8 = Al/aJo.

T!he I’ourier analysis affords for any periodic pres-
sure variation a sum of pure harmonic pressure oscilla—
tions for each of which i complex heat transfer coefficient
can be obtained; the dissimilar heat transfer coefficients
being arranged methodically. As the thickness of the
boundary layer, its material properties and the size of
the turbulent gas space are the same for. all harmonics it
simply results in a relationship with its ordinal number
(frequency). In figure 2 the, end points of all vectors,
‘which represent the complbx heat transfer coefficients for

.,.
$ ,

.-— —..— .—. — - . — —
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coefficients for any chosen periodic pressure variation
. lie therefore on a curve 8/s = constant. Then, if one
of these is known 8/s can be determined, “and on the

; basis of this singular relationship all th$-otlier values
can be obtained.’ In general the heat–transfer coeffi-
cient fcr the frequency w = O, that is, the coefficient
existing at normal, steady heat transfer is..probably
known.

In one point the foregoing assumptions are admitted-
ly not entirely realized physically. l?or the simplifi-
cation of the differential equation (2) it had been
assumed that the gas particles within the range of a ‘
finite temperature gradient execute no movement perpen-’
dicu.lar to the wall surface. This is especially untrue
of the gas particles of the boundary layer, since they -
even in s,-~rfaces oblique or yarallel to the general
direction of the compression - by their restricted free-
dom of notion due to the viscosity are preponderately
compressed perpendicularly to the wall surface.

This defect , while producing no essential change in
the existing data of the :periodic heat transfer at small
pressu,re oscillations is on’the other hand of great im—
portan,ce -for the heat volume to be renoved. in a reciyro-
caiing eng,,ine. In subsequent developments the effect of
the periodic motion, of the gas particles immediately be-
fore the wall in direction perpendicular to the wall sur-
face is to be explored thoroughly. In”another article to
be published in the near future, the action of this in-
fluence is for the tine being computed indirectly from the
energy loss required to maintain period.icity.

Translation by M. M. Guggenkein,
Pratt & Whitney Aircraft.

1. Pfriem, H.: ?robleme derperiodischen W5Yneiibertragung
mit 3ezug auf Xollenmaschinen. i?orscho Ing.-Wes.,~
Bd. 10,. 1939, p. 27.

2? Pfrie~, Fk: Eeitirag zur Th.eerie der Varmeleitung bei
periodisch veranderlichen Temperaturfeldern. Ing.-
Arch.$ Bd. 5, 1935f pi 970
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Figure 1.- Elementary
layer in

the gas space before
a flat wall.
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Figure 2.- Representation of the c’omplexNusselt number,
Nuc = c@/Al in the Gauss’ numerical plane for

small, periodic compression of a gas before a metal wall
(P12 = -1) by limited thickness (5) of boundary layer flow
and different value (s = V /Ot) in th6 turbulent gas space.
The straight line under 458 represents the asymptote of
the curve.
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